Many of you may know that radio spectrum is a valuable commodity and that globally there are clear rules (and often licenses that cost money) in order to use particular frequencies and bands. The radio frequencies in each country are “owned” by that country, and each country has the ability to permit or license specific use in certain frequencies. Fortunately, some bands are allocated in the same way with similar rules across many countries – these are called harmonized bands.

Bluetooth® operates in a harmonized frequency band that is one of the ISM bands (ISM=Industrial, Scientific and Medical) along with other technologies that also use the band (for example Wi-Fi or microwave ovens). Products are allowed to operate without a license using the ISM bands, but must adhere to a set of rules that help everyone benefit from the value provided by the spectrum. These rules define such things as maximum transmit power levels and how much spill over there can be in adjacent frequency bands. This means technologies like Bluetooth have what are called “guard bands”—free spectrum at the ends of a frequency band—in order to ensure there are no transmissions that spill over into the next band.

In the US, the FCC allocated the frequency band “above” the ISM band Bluetooth uses to a company called Globalstar specifically for the operation of a satellite communications service. As I understand it, Globalstar has not been as successful as they hoped in operating that service and have been exploring other ways to use the spectrum (although it was allocated for a specific use).

Globalstar proposed a new service called TLPS (terrestrial low power service) which would use a portion of their allocated band and a portion of the ISM band spectrum. In order to do this they have been asking the FCC to allow them to use this “satellite spectrum” for a terrestrial service AND for a change in the rules for the ISM band (just for them) so that only they can use a portion of it in an overlapping/spill-over way.

This seems wrong on many levels. Why should the FCC allow one company to use the ISM band with preferential rules only applying to them? If they could not operate a successful satellite service then they have little track record to show they would be successful at operating a different commercial service. Shouldn’t the FCC take the frequency back and allocate it to someone who could operate the service successfully?

In addition, the Bluetooth SIG (and others) has maintained this kind of overlapping use would cause interference and a detrimental impact on the other users of the ISM band, particularly the users of the hundreds of millions of Bluetooth devices sold in the US.

Recently, the FCC requested the Bluetooth SIG and other interested groups attend a technical demonstration session with Globalstar at the FCC Technology Center and attempt to highlight, in some way, if the interference concerns were valid. From what we saw, they are.

The demonstration sessions were held in a rather small space that meant we could not conduct some of the demonstration scenarios we had prepared. Nevertheless, our demonstrations with Bluetooth Hearing Aids and Bluetooth Smart Lighting both showed a clear impact from TLPS. The Bluetooth Hearing Aids showed packet loss increasing from a “correctable level” around 10% to nearly double at 20%—for end users this could mean broken up, or significantly lower audio quality. The Bluetooth® Smart Lighting demonstration used multiple Bluetooth lights spread around the room and when TLPS was present clearly showed a fourfold increase in the number of times certain lights did not receive a command to turn on or off or change color. Two clear demonstrations of the interference caused by TLPS.

Due to these results, we were beyond surprised this week to see claims by Globalstar that TLPS caused no interference with Bluetooth—especially when they were present for our demonstrations and saw the results. There is clear interference with products and services in the ISM band from the proposed TLPS service.

The Bluetooth SIG has cooperated with the FCC throughout this lengthy process. You can see our filings with the FCC here, including our recent filing summarizing our findings from the demonstrations. We believe we have now shown there is a concerning level of interference caused by this overlapping TLPS service.

Moreover, I believe that it is wrong and a dangerous precedent to allow one company to have different rules for using the ISM band. For the sake of the most beneficial use of the ISM band in general and the millions of U.S. Bluetooth users in particular, I do hope the FCC denies the Globalstar TLPS proposal.

Is Globalstar Telling the Whole Story?

Read the FCC Filings

Updated Market Trends for Bluetooth Location Services Solutions

A well-known and popular solution for audio streaming and wearable devices, Bluetooth® technology is now…

High-Accuracy Low-Power Secure Ranging using Bluetooth® Channel Sounding

Many applications use Bluetooth-based ranging and localization using received signal strength indication (RSSI), including…

Bluetooth® Low Energy Angle of Arrival Location Solution – Tags, Receiver, Antenna, Firmware, Application Software

The development of Bluetooth® Low Energy angle of arrival location solutions requires multi-disciplinary co-operation…

Distance Estimation Advantages Using Bluetooth® Channel Sounding

Bluetooth® Channel Sounding is an upcoming feature enables secure, fine ranging between two Bluetooth…

Exploring the Bluetooth LE PAwR Feature in Large-Scale Network Testing

Bluetooth™ LE recently introduced periodic advertising with responses (PAwR), a bidirectional communication feature with…

Using Bluetooth® Periodic Advertising with Response Feature to Control Wireless Battery Management Systems

In the beginning of 2023, Bluetooth SIG published a new version of Core specification,…

New Five-Year Forecasts for Bluetooth Data Transfer Devices

From household appliances and fitness trackers to health sensors and medical innovations, Bluetooth® technology…

Antenna Design for Small Bluetooth IoT Devices

In this whitepaper, we explore the challenges of antenna design for small Bluetooth devices…

Periodic Advertising with Responses (PAwR): Bidirectional Bluetooth Advertising Is Now Possible

If you’ve wondered whether advertising in Bluetooth Low Energy can be bidirectional, then this…

Recently Released: New Trends for Bluetooth Device Networks

Though more commonly associated with audio streaming and wearable devices, Bluetooth® technology also plays…

2024 Bluetooth® Market Update

The 2024 Bluetooth® Market Update examines the direction and adoption of Bluetooth technology.

Bluetooth Developer Journey

As a leading player in the semiconductor industry committed to the development of cutting-edge…

Auracast Broadcast Audio Retrofit Solutions and Opportunities

This report by ABI Research delves into the opportunity for public spaces to offer…

Generic Health Sensor Design and Implementation Guide

The Generic Health Sensor (GHS) Design and Implementation Guide guides implementers of health sensor…

How Can Bluetooth® Technology Enable Digital Transformation Across the Industrial IoT?

Internet of Things (IoT) have come to be synonymous with connected devices during this…

How Bluetooth® NLC Standardizes Control for Smart Lighting

Discover how Bluetooth® NLC is paving a new path for lighting control and making…

Revolutionizing Online Order Fulfillment: Managing Mis Shipments

Discover how Wiliot, an ambient Internet of Things (IoT) pioneer, is revolutionizing the online…

What's the Range of Auracast Broadcast Audio?

Get the answer to the question everyone’s asking. Find out what the coverage area…

Can You Add Auracast Support to Existing Devices?

Are you waiting for native Auracast™ support? You might not have to. Find out…

Is the Number of Auracast Receivers Really Unlimited?

Not convinced? Learn how an unlimited number of Auracast™ receivers can join a single…

The Ambient IoT - The Emergence of a New Class of Bluetooth® IoT Devices

Over the past two years, the Ambient IoT has been a growing topic of…

Retail Pharmacy

A leading retailer is collaborating with Wiliot, an ambient Internet of Things (IoT) pioneer,…

The Bluetooth® Low Energy Primer

Are you new to Bluetooth Low Energy? Learn about its constituent parts, features, and how it works.

Introducing Bluetooth® LE Audio

Now available for free digital download, get your copy of this in-depth, technical overview of the LE Audio specifications.

Bluetooth® Technology for Linux Developers

Learn how to use the interprocess communication system D-Bus and the BlueZ APIs to create Bluetooth applications for Linux computers.

Designing and Developing Bluetooth® Internet Gateways

Learn about Bluetooth® internet gateways, how to make them secure and scalable, and design and implement your own...

 Get Help